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Detailed results are presented of dynamic Monte Carlo simulations of the uniform star-branched polymer 
model confined to a diamond lattice. The model macromolecule consists o f f=  4 arms, every arm of identical 
length in the range of 11 to 199 statistical segments. The model incorporates interaction between the nearest 
neighbour segments and local stiffness (a preference of the trans states over both oauche states). The size 
and shape of a polymer chain was studied for various solvent conditions and various degrees of stiffness. 
The appropriate scaling laws are described. The ® conditions were also determined. Two different types 
of collapse transitions were found for the flexible chains and for stiff chains, similarly to the ease of linear 
chains. 
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INTRODUCTION 

Branched polymers have been an object of theoretical 
studies for many years, starting with the well known work 
of Zimm and Stockmayer. There are many simplified 
polymer topologies: stars, combs, brushes and rings. This 
paper examines uniform star-branched polymers, defined 
as structures in which linear chains of the same length 
emanate from a central point (branching point). The 
number of branches is called the functionality and is 
denoted by f. Recently some theoretical works were 
published which focused on the influence of the number 
of branches on size and shape of a macromolecule under 
various conditions 2-1° and on dynamic properties 1°. In 
this paper we concentrate on the influence of branching 
on thermodynamic properties of a single macromolecule, 
using f=4 .  Monte Carlo simulations of some dynamic 
properties of star-branched macromolecules will be 
presented elsewherC 1. It should be pointed out, however, 
that for higher functionalities ( f>  6) the behaviour of 
star-branched polymers is different, especially for finite 
length of arms 5. 

The behaviour of a single macromolecule (in an 
infinitely dilute solution), whether branched or linear, can 
be modelled by random walks on quasi-crystalline 
lattices 12. For a chain with excluded volume (i.e. 
non-selfintersecting chain) parameters describing size and 
shape of a macromolecular coil obey scaling laws~2-~4: 

( R ~ )  = A N '  (la) 

( S  2 )  = B N  ~ (lb) 

where (R 2) is the mean square end-to-end distance 
(centre-to-end distance for star-branched polymers), (S 2) 
is the mean-square radius of gyration and N is the total 
number of statistical segments in a polymer chain. 
Parameters A and B depend on the dimension of space 

and on the local details (e.g. lattice), y seems to be a 
universal exponent depending only on the dimensionality. 
In the case of athermal solution (no interactions with the 
sole exception of the excluded volume) or in good solvent 
conditions 12-14 its value is close to 6/5, which is in 
agreement with Flory's original theory is. Recently it 
has been calculated very precisely using simulation 
techniques and analytical theories for linear and for 
branched polymers 16-2° (see below). 7 is thought to be 
independent of f i n  star polymers 2'5'7's. With decreasing 
temperature or with deteriorating solvent conditions, the 
size of a polymer coil diminishes and at the so-called 
® point ~3'15 ~= 1. Thus, in O conditions the size of a 
polymer chain is described by the same exponent y as in 
the case of a random flight chain (i.e. a chain with no 
excluded volume) but the chain is not Gaussian ~a. Below 
the O point a polymer chain collapses. In the case of a 
linear chain one can distinguish two different cases of 
collapsed structures: (i) a dense disordered globule, where 
scaling theories predict exponent y=2/3; and (ii) a 
dense highly ordered state 6. The value of the ® 
temperature is believed to be identical for linear 
chains and star-branched polymers in the limit of 
the infinite length of chain, although it was proved 
in lattice Monte Carlo simulations 2L2z that the O 
temperature decreases with increasing functionality of a 
star-branched macromolecule. According to smaU-angle 
neutron scattering (SANS) experiments by Huber et al. 2a, 
real star-branched polymers do not exhibit Gaussian 
behaviour in ® conditions. 

A branched polymer chain occupies considerably 
smaller space compared to a linear chain with the same 
total number of segments. The ratio: 

9 = ( $ 2 ) b , / ( $ 2 ) ,  (2) 

is a commonly used measure of the size of a branched 
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polymer. Subscript br means branched and I means linear 
chain. For the random flight chain model, Zimm and 
Stockmayer 1 found: 

g=(3f-2)/f 2 (3) 

in the limit of the infinite length of the arm of a 
star. Values of parameter 9 obtained in computer 
simulations 5'7 for good solvent conditions (above the 
® temperature) are surprisingly close to those for 
random flight chains (equation (3)). Values of g found 
in experiments (at the ® temperature) are also in 
agreement with the Zimm-Stockmayer formula. Not long 
ago Bishop and Clarke 24 (using Brownian dynamics 
in the continuum space) proved that star-branched 
macromolecules with f = 3  arms collapse to the same 
structures as linear chains, i.e. to a sphere (parameter g 
approaches 1). 

A considerable number of theoretical 
papers 3-1°'21'22'24-41 have recently focused on star- 
branched polymers. Apart from star polymers, the most 
frequent subjects of theoretical studies are polymer 
combs 42'43 and brushes 43'44. Among theoretical works 
on star-branched polymers there are Monte Carlo 
simulations of lattice models 5,7,22.2 7-31, off-lattice chains 
with Lennard-Jones type interactions 34~39, molecular 
dynamics simulations of stars with many arms ( f  up 
to 50) 6'40, iterative convolution approximation a3 and 
Brownian dynamics simulations 24'34-39. It has recently 
become possible to synthesize well defined uniform stars 
and to study them experimentally 45-51 mainly by means 
of SANS and dynamic light scattering (d.l.s.). Thus, 
simulation results can now be related not only to 
analytical theories but to real experiments. 

DESCRIPTION OF THE MODEL 

The model is confined to a tetrahedral (diamond) 
lattice. The number of arms in the star polymer is limited 
by a lattice coordination number, z. In the case of a 
tetrahedral lattice, z = 4, which implies that the maximum 
number of arms is f =  4. Every arm consists of n beads 
located on diamond lattice sites connected with n units 
(segments, monomers). The (n + 1)th point is common for 
every arm. On a tetrahedral lattice eight different 
orientations of segments are allowed: f l l=[1 ,  1, 1], 
f12=[1, 1, -13,  f13=[1, - 1 ,  1], f 1 4 = [ - l ,  1, 1], 
f l s - - [ -  1, - 1 ,  - 1], f16=[1, - I ,  - 1 ] ,  f 1 7 = [ -  1, 1, - 1 ]  
and fls = [ - 1 ,  - 1 ,  1]. In order to maintain a correct 
lattice geometry, segments in a linear chain are allowed 
in a certain sequence: only one coordinate changes its 
sign when going from fli to fli+ 1, e.g. only f12,//3 and f14 
are allowed after fir  In order to introduce a proper 
volume of a macromolecule the double occupancy of 
lattice sites is forbidden. 

The model described above corresponds to a discrete 
version of the rotational isomeric states (RIS) model 
with excluded volume. It is possible to implement a 
local potential very easily in order to mimic some 
conformational stiffness as in real polymers. Every 
three consecutive segments of an arm determine a 
conformational state: trans (t), oauche minus ( g - )  and 
9auche plus (g +)- The rotational potential was assumed 
to be equal to zero for the trans states and to be equal 
to s,~>0 for both the 9auche states. Long distance 
potential (long distance means that interacting segments 
are far along the chain contour but close in space) was 

introduced in a familiar way: any pair of non-bonded 
segments interact with the following mean force potential: 

i f°rlri-rjl>l 
V/j = for Ir i - rjl = 1 (4) 

for Iri-rjl < 1 
where parameter e a < 0 (an attractive force), I= ]flil= 31/2 
is the length of a segment and rl, rj are coordinates 
of the ith and j th segments, respectively. The total 
configurational energy of the star-branched macro- 
molecule Econf is given by: 

E¢onf ----- Vae a -4- Vgeg (5) 

where v, is the number of contacts between non-bonded 
segments and v, is the number of both gauche states in 
a given configuration of a chain. 

COMPUTATIONAL PROCEDURE 

The choice of the Monte Carlo sampling procedure is 
crucial to the proper calculations of parameters of the 
collapse transition. The configurational space has to be 
sampled in a random coil state as well as in the collapsed 
state. The dynamic Monte Carlo (DMC) was found to 
be very useful in studying the collapse transition of lattice 
models of linear polymers and extremely useful for 
studying the folding transition of lattice models of 
globular proteins 52. The sampling procedure is based on 
the asymmetric metropolis scheme12,16,17. The small and 
local modification of an 'old' conformation leads to a 
'new' conformation. The new conformation is accepted 
with the probability: 

P = min[ 1, exp( - AE/kB T)] (6) 

where AE = E,=,,-Eold, kB is Boltzmann's constant and 
T is the absolute temperature. In the limit of a long 
Monte Carlo run the distribution of states approaches an 
equilibrium Boltzmann distribution. 

The Monte Carlo step consists of the following set of 
local micromodifications: 

(i) three-bond flip motion which changes states g + (9 - )  
into g-(g+) in a randomly chosen part of the 
polymer chain (Figure la); 

(ii) four-bond kink motion of a randomly chosen part 
of the polymer chain (Figure lb); 

(iii) a random reorientation of the two end segments of 
each arm (Figure lc); 

(iv) four-bond wave motion exchanges four consecutive 
bonds of a chain forming a sequence of states g + 9 -  
(g-g+) with two bonds located elsewhere in the 
same arm, to preserve the length of an arm (Figure 
ld); 

(v) five-bond wave motion where five consecutive bonds 
of a chain forming a cyclohexane-like ring are 
exchanged with a single bond located elsewhere in 
the same arm (Figure le). 

It was shown that the first three micromodifications 
span the entire conformational space (i.e. any allowed 
conformation can be achieved using this set of modifi- 
cations). Micromodification (ii) is very important because 
it introduces new local orientations, while micromodifi- 
cation (i) only causes diffuse local orientation along the 
chain. The wave motions (iv) and (v) play the role of 
internal reptation moves (a regular reptation move is not 
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Figure 1 (a) Three-bond flip motion; (b) four-bond kink motion; (c) 
two-bond end rotation; (d) four-bond wave motion; (e) five-bond wave 
motion 

used because of the condition that an arm should have 
a constant length). These types of moves shift local 
conformation along the chain and thus they are very 
important at lower temperatures 16'~7's2'53 because they 
are able to unfold configurations which correspond to 
local (not global) energy minima. They help to reduce 
the number of Monte Carlo steps required to reach an 
equilibrium state. The time scale is distorted when wave 
motions are used but we are not interested in dynamic 
properties of the model star polymer. The frequency of 
particular micromodifications is basically the same as in 
previous works16JT: a time unit (Monte Carlo step) 
consists o f f  end modifications, f ( n - 3 )  three-bond flip 
motions and 4 f (n -  3) four-bond kink motions (the factor 
4 was found experimentally to be efficient). Wave motion 
frequency changes with temperature and with the ratio 
of short-range to long-range interactions. Generally it is 
of a lower order of magnitude than those of three-bond 
flip motions. It should be pointed out that the central 
(branching) point is not subject to these moves; it can be 
immobile in the case of the simulation of equilibrium 
properties. This behaviour of the branching point 
provides some technical advantages which are discussed 
below. 

Every simulation run consists of l0 s to 107 Monte 
Carlo steps. Of course this number depends strongly 
on other parameters such as temperature, ratio of 
interactions, etc. The metropolis criterion is applied after 
every single micromodification in order to accept or reject 
a new conformation. In order to check if the algorithm 
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is ergodic and to ensure that an equilibrium state 
was reached, simulations were performed for the same 
set of parameters starting from a different initial 
configuration and using different streams of random 
numbers. In the collapse transition region, heating and 
cooling sequences were undertaken to ensure that a model 
macromolecule was not locked in a long-lived metastable 
state. 

In a single DMC run after a relatively short 
equilibration time, averages of some parameters were 
calculated by collecting data every 100-1000 steps. The 
mean-square radius of gyration is calculated as: 

1 N + I  

( S 2 > = N +  1 ,=~1 ((ri-Gm)2> (7) 

where the averaging ( . . .> is over the DMC steps for 
which the data were collected along the simulation run, 
ri, is the coordinate vector of the ith bead, rcm is the 
coordinate of the centre of mass and N =fn is the total 
number of segments (N + 1 is the number of polymer 
beads). This parameter describes the size and the shape 
of the entire polymer chain. The mean-square centre-to- 
end distance gives information on an average arm of the 
chain: 

J i = l  

where r.~ is the coordinate of the end of the ith arm and 
ro is the coordinate of the branching point. The reduced 
fourth moment of the radius of gyration was also 
calculated. The average fraction of trans states is given by: 

where vt is the number of trans states in a single 
conformation. The average conformational energy was 
calculated according to the equation (2) and averaged 
over many configurations. The mean-square energy was 
also calculated. 

RESULTS 

The simulations were made for star-branched polymers 
with n=  11, 24, 49, 99 and 199 beads in an arm and thus 
for a total number of beads of 45, 97, 197, 397 and 797, 
respectively (the length of an arm considerably exceeds 
the persistence length). The model chain was placed into 
the Monte Carlo box with edge length L=25 to 200. 
Hence, because of the immobility of the branching point, 
the entire chain was always inside the Monte Carlo box 
with the sole exception of the case where n = 199. This 
enables more extensive calculations to be made because 
periodic boundary conditions t2, which consume a 
considerable amount of computer time, were needed 
only for the case of n=  199. Two different reduced 
temperatures T* were defined for flexible and semiflexible 
polymers, respectively. In the first case T*=  kBT/ea (the 
only energetic parameter in this model) and in the second 
case T* =ksT/e,, (based on local interactions). All the 
DMC simulations were performed on IBM PC-386 
computers and on a SUN SPARC 2 computer in the 
Department of Chemistry Computer Center, University 
of Warsaw. 
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Table 1 Average properties of flexible chains (_+standard error of simulation). ~,=0)  

n T* <R~> <S~> (S'> (EN> (f,> 

oo 74.95 4-1.05 33.97 +0.53 1196 0.0000 

5.0000 70.26 4-1.01 32.09 + 0.51 1071 0.910 4- 0.0006 

3.3333 68.15+0.92 31.21 +0.44 1015 0.1030+0.0010 

2.5000 65.61 30.16 950 0.1163 

2.0000 63.11 29.16 890 0.1314 

1.8182 61.33 28.44 845 0.1409 

1.6667 59.90 27.82 813 0.1502 

11 1.5385 58.31 27.16 775 0.1595 

1.4286 56.50 26.25 725 0.1724 

1.2500 33.99 -+ 0.81 25.09 _ 0,32 664 0.1906 _ 0.0031 

1.1111 51.26+0.82 23.79+0,30 598 0.21244-0.0031 

1.0000 47.97 _ 0.76 22.43 + 0,26 532 0.2348 _+ 0.0034 

0.8333 42.42 __+ 0.61 20.07 + 0,19 423 0.2776 + 0.0038 

0.6667 37.24 4- 0.25 17.48 _ 0,11 318 0.3329 -+ 0.0042 

0.5000 31.75 4- 0.18 14.57 __+ 0.08 216 0.4060 _ 0.0039 

oo 192.5 __+ 1.2 86.94 ___ 0.42 7916 0.0000 

5.0000 178.6 + 2.1 78.68 4- 0.67 6513 0.0925 _ 0.0007 

3.3333 168.7 4- 1.0 75.37 4- 0.54 6012 0.1080 -+ 0.0011 

2.5000 159.0 + 1.2 70.86__+ 0.48 5332 0.1280___ 0.0013 

2.0000 145.1 + 1.9 65.054-0.73 4525 0.1524+0.0015 

1.8182 137.0+0.9 61.94+0.41 4112 0.1684+0.0012 

1.6667 130.4+ 1.3 59.13 ___0.51 3755 0.1842+0.0017 
24 1.5385 121.4-+ 1.0 54.85 + 0.52 3241 0.2038 4- 0.0022 

1.4286 115.6 + 1.8 52.86 + 0.62 3012 0.2201 _ 0.0029 

1.2500 102.04-1.3 46.73 4-0.53 2367 0.2601 +0.0032 

1.1111 92.21 ___ 0.93 41.08 4- 0.62 1825 0.3010 ___ 0.0032 

1.0000 81.78 __+ 1.04 35.58 ___ 0.55 1344 0.3453 __+ 0.0033 

0.8333 68.74 -+ 0.81 30.06 __+ 0.31 937 0.4050 + 0.0029 

0.6667 56.08 4- 0.85 25.68 -+ 0.26 670 0.4696 + 0.0030 

462.4 ± 3.5 197.9 ± 1.9 41 344 0.0000 

5.0000 425.5 182.5 35 472 0.0900 

3.3333 395.4 168.8 30 355 0.1087 

2.5000 347.5 150.1 24 231 0.1363 

2.0000 309.1 133.9 19 524 0.1674 

1.8182 291.2 122.5 16 361 0.1889 

1.6667 27.3 111.9 13 802 0.2125 
49 1.5385 234.5 4- 3.1 99.23 _ 2.42 10 838 0.2442 _ 0.0031 

1.4286 215.6 ± 6.2 89.68 _ 2.63 8957 0.2700 _ 0.0028 

1.2500 165.9___4.3 68.86-1-2.15 5175 0.34134-0.0035 

1.1111 135.5 54.65 3120 0.4050 

1.0000 118.8 49.61 2564 0.4443 

0.8333 115.9 41.95 1783 0.5111 

0.6667 84.13 __+ 2.60 39.13 _ 1.11 1539 0.5585 _ 0.0021 

oo 1084 + 6 450.0 4- 2.8 212 896 0.0000 

5.000 885.1 4- 6.2 380.3 -+ 3.6 152 264 0.0925 + 0.0023 

3.3333 773.4 334.4 120171 0.1130 

2.5000 744.4 307.7 101 196 0.1385 

2.0000 634.9 278.5 87 624 0.1744 

1.6667 494.1 ± 4.2 202.3 4-1.9 45 672 0.2405 4- 0.0018 
99 1.4286 296.1 _+2.3 116.3_+ 1.1 14666 0.3451 _+0.0031 

1.2500 232.5 Jr 3.2 91.07 ± 1.36 8664 0.4255 _+ 0.0025 

1.1111 181.7 72.32 5282 0.4973 

1.0000 148.3 69.74 4897 0.5315 

0.8333 141.1 63.22 4009 0.5861 

0.6667 121.0 _+ 2.1 57.75 _+ 0.95 3346 0.6501 _+ 0.0018 

oo 2486_+ 11 1041 _+5 1 173 721 0.0000 

5.0000 1938 ± 14 870.6 _+ 3.6 793 595 0.0890_+ 0.0019 

0.378 + 0.001 

0.366-+ 0.001 

0.361 + 0.002 

0.353 

0.347 

0.342 

0.338 

0.333 

0.330 

0.322 ___ 0.002 

0.314 _ 0.002 

0.306 _ 0.002 

0.293 + 0.002 

0.283 + 0.001 

0.283 + 0.001 

0.375 4- 0.001 

0.363 _+ 0.001 

0.357+0.002 

0.351 _ 0.001 

0.343 -+ 0.001 

0.339 + 0.002 

0.335__+0.002 

0.331 +0.003 

0.328 _ 0.002 

0.320+0.002 

0.314__+0.003 

0.309 _ 0.003 

0.303 _ 0.002 

0.301 _ 0.003 

0.373__+0.001 

0.363 

0.356 

0.350 

0.343 

0.340 

0.335 

0.3314- 0.002 

0.327 4- 0.002 

0.3224-0.002 

0.319 

0.315 

0.310 

0.300 _ 0.002 

0.371 4- 0.002 

0.362_ 0.001 

0.356 

0.350 

0.342 

0.335-t-0.001 

0.329 __+ 0,003 

0.325 4- 0.002 

0.324 

0.318 

0.310 

0.313-I-0.002 

0.3724-0.002 

0.361 4-0.002 
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Table 1 continued 

n T* (R~) (S~) (S ' )  (E~) (f,) 

199 

3.3333 1897 817.7 693 044 0.1077 0.356 
2.5000 1350 582.1 354 844 0.1420 0.348 
2.0000 1167 474.6 245 399 0.1860 0.341 
1.8182 874.64- 8.9 381.1 + 5.5 156 501 0.22474-0.0047 0.338 4-0.002 
1.6667 757.4 4- 9.3 286.2 4- 4.8 91 624 0.2780 4- 0.0061 0.335 4- 0.003 
1.5385 499.2 4- 8.6 195.8 4- 6.1 41 393 0.3489 4- 0.0042 0.332 4- 0.003 
1.4286 454.0 163.8 28 137 0.3974 0.328 
1.2500 263.7 121.9 15 004 0.4959 0.327 
1.1111 204.2 109.0 11924 0.5569 0.325 
0.8333 184.6 4- 5.1 88.16 4- 2.11 7776 0.7069 4- 0.0043 0.323 4- 0.001 
0.6667 178.7 4- 4.2 83.97 4-1.90 7051 0.7452 4- 0.0051 0.316 + 0.002 

Table 2 Exponents ? (equations (la) and (lb)) calculated by various 
means 

Table 3 Parameters ~/(equation (2)) and g' (equation (12)) calculated 
by various means for the athermal chain 

Reference YR linear YR star ~'s linear Ys star Reference g g' 

This work 1.211 1.178 This work" 0.590+__0.005 1.183+0.008 
4- 0.004 + 0.005 lb 0.625 1.000 

16, 17 ~ 1.184 1.186 9 ~ 0.667 1.166 
4- 0.002 4- 0.004 7 a 0.611 1.168 

7 b 1.184 1.1752 27, 28" 0.63 
18 ~ 1.176 1.176 51 0.604-0.01 1.174-0.02 

+0.0015 4-0.0015 49 g 0.633, 0.65 
19 a 1.1802 1.1832 This work 0.5944-0.006 1.1584-0.012 

(amplitude ratios) h 
Dynamic Monte Carlo, tetrahedral lattice 

b Monte Carlo, face-centred lattice, dimerization technique 
Renormalization group theory 

a Monte Carlo, tetrahedral lattice, pivot algorithm 

Flexible chains 
For  the flexible chain model  there are only two input 

parameters:  the reduced temperature T* and the chain 
length. In  Table 1 some ou tpu t  parameters  are presented 
for chain lengths over a wide range of  temperature.  These 
parameters  are (R~) ,  (Sr~), ( f )  and the normalized 
mean energy (EN)  = Eco,f T*/(N + 1). The normalized 
energy can be comparable  for all systems under 
considerat ion and, moreover,  it represents the mean 
number  of energetic contacts  for flexible chains (the 
second term in equat ion (2) disappears for flexible chains). 

The values of (S  2 )  and ( R  2 )  for the case of  good  
solvent condit ions (athermal chain) fulfil the scaling laws 
of equat ions (la) and (lb). The values of  bo th  exponents 
~'s and ~'R obtained from these equat ions are presented in 
Table 2 together  with other  simulation results and 
theoretical predictions (with results concerning linear 
chains for comparison).  It  should be pointed out  that  our  
D M C  simulation results obey power  laws (la) and (lb) 
with very good  accordance.  The rejection of  the data  
concerning the shortest  chains (n = 11, 24) does not  change 
significantly the values of  the exponents.  Con t ra ry  to the 
renormalizat ion g roup  predictions, our  Ys 4 YR and YR > Ys 
are similar to the data  of  Batoulis and Kremer  7 (Monte  
Carlo simulations on a different lattice using a different 
simulation method). This feature of scaling behaviour  
differs f rom that  of linear chains where ~s ~ YR according 
to recent simulations 16'17'19. This can be explained by 
the fact that  the arms are too  short  to exhibit the correct 
scaling behaviour  of  (RE) .  

"Data extrapolated to infinite N 
b Random walk model 
c Renormalization group theory 
a Monte Carlo, face-centred lattice, dimerization technique 
e Monte Carlo, tetrahedral lattice 
I Monte Carlo, simple cubic lattice 
g Experimental, polystyrenes and polyisoprenes, respectively 
h Amplitude ratio BbJBv Bbr was determined assuming parameter 

= 1.186 (the same as for linear chains) 

The ratio (S~) / (R~)  changes with the length of  an 
arm: from 0.453+0.008 for N = 4 4  to 0 .419+0.004 for 
N = 796. These data  are located between two theoretical 
limit predictions: 21/2/6 (=0.236)  for the r andom flight 
s tar-branched polymer  and 3/5 for the homogeneous ly  
filled hard  sphere 14. The next parameter  describing the 
shape o f a  macromolecule  is the reduced fourth moment :  

trs(4, 2 )=  ($4)/($2) 2 (10) 

The reduced fourth momen t  extrapolated (in the limit of 
N = oo) has the value a s =  1.10. The r a n d o m  flight model  
predicts: 

120 -- 120/f+ 4If 2 
as(4, 2 )=  - 1 . 1 2 3  (11) 

1 5 ( 3 - 2 / f )  2 

The size of an arm of a s tar-branched polymer  is usually 
compared  with a linear chain of  the same length and 
described by the following parameter:  

g'= (g2)br/(R2)l (12) 

The parameters  0 (according to equat ion (2)) and g' were 
calculated using the data  of  Kolinski et al. 16,17 concerning 
linear chains on the same lattice with a similar number  
of segments and obtained by similar D M C  simulations. 
The values of g and g' are presented in Table 3 with other  
simulation results and theoretical predictions. Ou r  results 
are obtained from the extrapolat ion in the limit of  the 
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Figure 2 Expansion factor ~ versus reduced temperature T* for 
various lengths of flexible chain: (3, N=44; O, N=96; V, N=  196; 
V, N =  396 

infinite chain. In the random walk model we have the 
Zimm-Stockmayer formula (equation (2)), and using the 
renormalization group method of Miyake and Freedg: 

9 = V { 1 - - 8 - - 4 - d r ! 3 ( f - l X f - 2 ) L  2(3f- 2) 4(f-lX3f-51n2)l~~ IJ 

(13) 

where d = 3 is the dimension of space. Parameter 0' = 1 
for the random flight chain, and in Miyake-Freed theory 
is given by: 

9'= 1 + ~( f -  1Xln2-1/4)(4-d) (14) 

The results obtained in the our DMC simulation and in 
other simulations with different techniques and on 
different lattices 5'7'9'27"28 (Table 3) are in good agreement 
with these theoretical predictions. This agreement 
confirms that parameters 0 and 0' are not sensitive to 
solvent quality, at least in the case of small functionality 
and in good solvent conditions. 

In order to determine the location of the ® temperature, 
we analysed the expansion factor of a polymer chain 
defined as: 

~ = <S~>b,/<S~>o (15) 

where <S~> o is the mean-square radius of gyration 
calculated for the rotational isomeric states model 
of star-branched polymer with the same number of 
segments and branches according to the following 
expression 15,34--39: 

12 ~ [- (n+4Xn-1)]  2 m - 1  . . . . .  ~ l+<cos/z> 
<s~>o=-~lfn[1-~ g j+m --~-JU-Uj 1-<cos#> 

(16) 

where # is the valence angle. In the case of a tetrahedral 
lattice (cos/~>=l/3. The results are presented in 
Figure 2 where the expansion factor ~j is plotted versus 
the reduced temperature for various chain lengths. The 
(9 temperatures can be found from Fioure 2 as points 

where ~J = 1; they increase with increasing chain length. 
All curves cross at approximately the same temperature 
k®/eg = 1.88. The ® temperatures for the flexible linear 
chains were found to be between 2.12 (Monte Carlo 
simulations of Kolinski et al. 16,17) and 2.25 __+ 0.05 (Monte 
Carlo simulations of Kremer et al)°). 

Below the (9 temperature a flexible star polymer 
collapses to a dense globule. This can be seen from 
Figure 3 where the mean-square radius of gyration <S~> 
is plotted versus the reduced temperature T* for 
various chain lengths. The size of the chain diminishes 
continuously with decreasing temperature. Thus, it is 
impossible to estimate the location of the temperature of 
the collapse transition Tc from this figure. A crude 
estimate of the values of T c can be made from Figure 4 
where the reduced heat capacity Cv/ksN~ 2 is plotted 
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Figure 3 Mean-square radius of gyration <S~> versus reduced 
temperature T* for various lengths of flexible chain: O, N = 44; 0 ,  
N=96; ~7, N =  196; V, N=396; I-1, N=796 
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Table 4 Average properties of semiflexible chains 

. ~,/~. r* <n,b <s~> <EN> <f,> 

5.0000 197,3 +___ 2.8 86.37 + 1.14 0.4575 -t- 0.0051 0.408 + 0.002 

2.5000 189,0 + 3.2 82.89 + 1.44 0.4090 + 0.0064 0,438 -t- 0.002 

2.0000 184.0 80.36 0.3810 0.453 

1.6667 176,2 73.75 0.3467 0.467 

24 1 1.4286 167.0 + 2.3 71.45 -t- 1.26 0.3097 __ 0.0045 0.481 +___ 0.002 

1.2500 157.1 __ 2.0 65.24 +___ 1.25 0.2626 __ 0.0051 0.496 ___+ 0.003 

1.1111 139.5 -I- 2.2 56.09 + 1,33 0.2093 +0.0074 0,507 +0.003 

0.8333 91.04+___ 1.16 38.31 ___+ 1 , 0 1  -0.0253+0.0052 0.597+0.003 

0.6667 42.05 ___+ 1.22 34.53 -I- 0,87 - 0.2077 -I- 0.0027 0.700 -I- 0.002 

2.0000 215.4 93.93 0.4446 0.471 

1.0000 254.1 t02.8 0.3491 0.571 

0.6667 314.6 _____ 3.2 112.7 __ 1.2 0.2367 ___+ 0.0032 0.675 __ 0.004 

0.5556 362.7 -t- 3.7 103.6 -t- 1.3 0.1168 _____ 0.0041 0.748 ___+ 0.008 
24 2 0.5000 764.1 110.8 -0.0651 0.874 

0.4545 846.6 + 5.6 111.7 + 1.8 - 0.0930 + 0.0027 0.897 _____ 0.008 

0.4167 856.6+7.3 112.6___+2.3 -0.1035+0.0031 0.901+0.007 

0.3846 914.5 -I- 4.5 107.3 + 1.9 - 0.1263 +___ 0.0022 0.914 __ 0.004 

1.6667 229.9 99.43 0.4375 0.496 

1.1111 268.7 110.5 0.3808 0.561 

0.8333 307.6 121.3 0.3233 0.624 

0.6667 366.0 _____ 4.1 137.4 + 2.5 0.2667 + 0.0051 0.686 + 0.004 

0.5556 447.0 ___+ 3.8 160.7 -I- 2.2 0.2016 +__. 0.0059 0.747 +___ 0.005 
24 3 

0.4762 576.2 186.6 0.1307 0.814 

0.4167 753.7 189.8 0.0472 0.878 

0 602.4 102.1 -0.0265 0.904 

0.3704 394.1 101.1 - 0.0425 0,927 

0.3333 362.5 -t- 2.8 101.1 __ 0.9 -0.0575 ___+ 0.0018 0.933 ___+ 0.002 

5.0000 959.6 418.6 0.5035 0.403 

2.5000 864.8 369.9 0.4445 0.436 

2.0000 779.0 -I- 7.3 327.3 ___+ 2.1 0.4018 -I- 0.0071 0.451 -I- 0.003 

1.6667 529.5 207.7 0.3158 0.465 

1.4286 334.9 133.0 0.2039 0.480 

100 1 1.2500 240.7 __ 4.1 89.94 -t- 1.63 0.0733 -t- 0.0044 0.504 -t- 0.003 

1.1111 193.9 + 3.5 79.38 + 1.28 - 0.0073 + 0.0035 0.524 -I- 0.004 

0.8333 170.1 __ 3.8 77.23 -t- 1 . 0 6  -0.3264+0.0039 0,680+0.003 

0.6667 130.1 73.01 - 0.4041 0,728 

0.5000 146.8 71.64 -0.4475 0.744 

0.4000 147.9 71.76 -0.4564 0.753 

2.0000 1060 435.5 0.4854 0.468 

1.0000 965.9 __ 5.1 405.9 + 2.3 0.3736 + 0.0071 0.568 + 0.004 

100 2 0.8333 729.8 _____ 8.2 284.6 + 2.8 0.3081 -I- 0.0052 0.608 ___+ 0,003 

0.7143 437.4 + 4.9 168.0 -t- 1.7 0.1767 -I- 0.0036 0,663 -t- 0,003 

0.6667 576.6 180.6 -0.0792 0.809 

2.5000 2067 911.9 0.4914 0.468 

1.0000 1499 581.7 0.3661 0.569 

0.8333 1527 542.7 0.3083 0.608 

200 2 0.7615 865.6 __ 6.3 258.6 -t- 2.4 0.2080 +___ 0.0051 0.702 + 0,004 

0.7143 427.9 -t- 5.7 166.7 _____ 2.1 - 0.0427 __ 0.0065 0.760 -t- 0,003 

0.6667 554.7 194.0 - 0.1261 0.814 

0.5000 411.4 177.9 -0.1863 0.845 

1.6667 1915 852.0 0.1397 0.492 

1.1111 1828 858.7 0.1584 0.556 

0.8333 2295 1075 0.3561 0.621 

0.6667 2261 + 12 900.9 + 4.5 0.2859 + 0.0037 0.685 +___ 0.004 
200 3 

0.5556 1712 __ 9 643.3 -I- 3.1 0.0274 + 0.0022 0.803 + 0.005 

0.4762 872.4 -t- 8.5 379.8 ___+ 2.4 - 0.0928 -t- 0.0029 0.889 -I- 0.005 

0.4167 853.4 371.0 -0.1201 0.902 
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T a b l e  4 continued 

n e~e, T* (R~)  (S~)  (EN) ( ~ )  

200 3.5 

200 4 

0.3704 809.1 363.7 - 0.1231 0.907 

2.0408 2418 1045 0.5069 0.471 

0.9524 2265 969.2 0.3890 0.592 

0.8163 2442 1131 0.3533 0.629 

0.6645 2944 1273 0.2957 0.688 

0.5495 2840___ 14 1282 ___ 5 0.2282__+ 0.0081 0.751 __+ 0.004 

0.4926 907.3 ___ 8.6 393.0 + 2.6 - 0.0495 ___ 0.0042 0.883 + 0.005 

0.4082 1371 389.6 - 0.0537 0.892 

0.3361 1258 371.27 -0 .0618 0.894 

2.0000 1996 930.3 0.5072 0.473 

1.0000 2167 880.9 0.4007 0.583 

0.6667 3566 1475 0.2975 0.689 

0.5556 3459 1361 0.2402 0.747 

0.5000 4384 + 23 1646 __+ 9 0.2033 _ 0.0064 0.781 _ 0.004 

0.4545 1931 __+ 12 1057 + 9 0.0748 ___ 0.0038 0.844 __+ 0.004 

0.4348 1550__+ 9 643.4 + 4.2 0.0114 ___ 0.0019 0.872__+ 0.003 

0.4167 2336 730.1 -0 .0123 0.882 

0.3333 2730 702.7 -0 .0242  0.893 

versus the reduced temperature (according to the 
fluctuation theorem Cv/k = (E 2) - (E)2; ~ = e~/kB T). The 
collapse temperature Tc can be estimated with about 10% 
accuracy from the location of a peak on the Cv curves 
which are sharper for the shortest chains. Tc = 1.00, 1.16, 
1.4, 1.5 and 1.6 for N=44, 96, 196, 396 and 796, 
respectively. Consequently one may expect that for 
N ~ ,  T c and 19 coincide. The dimensions of the 
collapsed chain undergo scaling laws: (R~)=3.88 
( N -  1) 0.542-+0.004 and (S~) = 1.86 ( N -  1) 0"548-+0"008, a t  

the temperature T* = 0.667. The values of these exponents 
are lower than the value of 2/3 predicted by de Gennes 14. 
Simulations of linear chains and other models of 
branched polymers also give low values of the exponents 
(?=0.55 for linear chains 16'17 and 0.55 for a star with 
f =  6 arms34-39). This is caused by finite chain effects. The 
reduced moments of collapsed chains of all lengths, 
as(4, 2)=1, indicate that in practice the collapsed 
star polymers occur in one conformation. Parameter 
g=l .00 (at the temperature T*=I.0), which means 
that the distribution of segments is the same as in 
the collapsed linear chains. There is no ordering in the 
collapsed structures - -  the mean fraction of trans states 
( f )  decreases slowly and smoothly with decreasing 
temperature (f~ is about 0.37 in the case of the athermal 
model) and below the transition reaches values close to 
0.3 (Figure 5). 

Semiflexible chains 
Table 4 summarizes data concerning semiflexible 

polymer chains (with local stiffness eg ~ 0). The ratio eg/~ 
becomes an additional input parameter. All output 
parameters remain the same as in the case of flexible star 
polymers. The example of the behaviour of the mean- 
square radius of gyration (S~) versus the reduced 
temperature T* is presented in Figure 6 for the total 
number of segments N = 96 for various values of the 
ratio ~/e~. In order to estimate the location of the 
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F i g u r e  5 Mean fraction of trans states ( f  t) versus reduced temperature 
7* for the case of flexible chains: (3, N = 4 4 ;  O,  N = 9 6  

(9 temperature we plotted in Figure 6 values of (S~) 
calculated for a random flight chain with the same local 
interactions (RIS model). The detailed derivation of the 
formula for this S~ is presented in the papers of Mattice 
et al. 54'55. An intersection of the RIS curve with a curve 
obtained from simulations gives the location of the 
19 temperature with an accuracy of about _ 0.05. For the 
case of a star polymer with arm length n=24, the 
19 temperature is equal to 1.80, 1.02 and 0.82 for the ratio 
eg/ea = 1, 2 and 3, respectively (1.80, 2.04 and 2.46 in kB T/ea 
units). For the longest chain (N = 796) the 19 temperature 
is equal to 1.00, 0.82 and 0.51 for the ratio e~/e,=3, 3.5 
and 4, respectively (3.00, 2.87 and 2.04 in kBT/e~ units). 
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It can be seen from Figure 6 that semiflexible chains 
undergo the collapse transition to a dense state, similar 
to the flexible chains, for short as well as for long chains. 
But this transition takes two distinct forms: chains with 
low values of the ratio e~/ea (=  1 or 2) undergo smooth 
collapse transitions similar to those of flexible chains, 
while chains with higher e~/ea ratios (>3) undergo 
a very sharp transition. In the first case, long-distance 
attractive interactions override local stiffness. Even at the 
intermediate temperatures, the radius of gyration does 
not increase significantly; at low temperatures it decreases 
smoothly. In the second case the behaviour of star 
polymers at intermediate temperatures is similar to that 

Monte Carlo study of star-branched polymers: A. Sikorski 

of more flexible chains but at lower temperatures the size 
of a macromolecule increases and then sharply decreases. 
This means that local interactions prevail and a collapsed 
state is a dense highly ordered structure. The size of these 
globules is considerably greater than those of flexible 
chains and semiflexible chains with low es/e= ratios. It 
can be seen from Table 4 that at higher temperatures the 
values of ft are close to those of the RIS model, then 
change sharply reaching values between 0.9 and 1.0 for 
the collapsed structures, independent of the length of the 
chain. Examples of the courses of f~ versus T* are 
presented in Figure 7. Plots of the reduced heat capacity 
Cv/knN~ 2 versus temperature T* for all chain lengths 
under consideration are presented in Figure 8. The 
location of the sharp peak on Cv curves and the jump 
in S 2 (or Cv, f~ and EN) versus 7* curves can be treated 
as a crude estimation of the collapse temperature Tc. In 
the case of N = 44, Tc is 0.42 for e~/ea = 3. For the longest 
chain (N= 796), values of Tc are 0.55, 0.48 and 0.44 for 
e~/ea= 3, 3.5 and 4, respectively (1.65, 1.68 and 1.76 in 
kB T/ea units). 

Examples of collapsed structures are presented in 
Figures 9a and b. Flexible chain seems to be a random 
dense globule (Figure 9a). In the case of stiff chains 
(Figure 9b) one can see folded domains of almost pure 
trans states. The structure is not unique: in every 
simulation run a slightly different collapsed structure was 
obtained: all output parameters are close but the number 
and length of ordered stretches varies. This feature is 
similar to the case of linear chains 16'17. 

CONCLUSIONS 

The dynamic Monte Carlo simulations of a tetrahedral 
lattice model of uniform star-branched polymers were 
concentrated on the collapse transition. Some static 
properties of star macromolecules under various 
conditions were calculated. These data (the mean- 
square radius of gyration, the mean-square centre-to-end 
distance, fraction of trans states) in good solvent 
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1 

both flexible and semiflexible chains. The same behaviour 
was recently predicted by the analytical theory 21. 

Further decrease of the temperature leads to the 
collapse transition of a star macromolecule. There are 
two different kinds of transitions: a smooth (continuous) 
transition in the case of flexible chains and semiflexible 
chains with low e~/~a ratios; and a sharp (discontinuous) 
transition in the case of semiflexible chains with higher 
values of eg/e~ ratio. The location of the transition 
temperature Tc depends on the length of a chain and on 
the e~/ea ratio. In the case of flexible chains, Tc = 1.6 for 
the longest polymer (N = 796). A simple extrapolation to 
the infinite chain leads to the value of Tc = 1.8, which is 
very close to the ® temperature. In the case of semiflexible 
chains, Tc decreases with increasing values of the e~/e~ 
ratio (N = 796): from 0.48 (2) to 0.44 (4). These values are 
slightly lower compared with those of linear chains 16'17 
(N = 400): 0.57 (3) and 0.50 (4). Generally, the transition 
temperature decreases with the stiffness of the polymer 
chain. 

The strength of the local stiffness assigns polymers to 
one of two distinct classes. Flexible chains collapse to 
dense globules. Semiflexible chains collapse to highly 
ordered (but not unique) structures consisting of stretches 
of t rans  states with the minimum number of bends. 
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Figure 9 Example of conformation of (a) collapsed flexible chain of 
total length N = 796 at T* = 0.6667 and (b) collapsed semiflexible chain 
of length N = 796, e~/e= =4, at T* =0.3333. O, branching point 

conditions (high temperature, random coil state) exhibit 
behaviour which is very close to that of linear chains and 
other star-branched polymer models. The size parameters 
scale according to well known scaling laws and the 
parameter # is close to the value of the random flight 
model in the whole region above the ® temperature. The 
behaviour of a star polymer with decreasing temperature 
(deterioration of the solvent) depends on the local 
interactions of the chain. In the case of flexible chains 
(with no local stiffness) the size of a polymer chain and 
the total configurational energy decrease smoothly and 
the fraction of t rans  states decreases smoothly and very 
slowly. In the case of semiflexible chains (with local 
stiffness) the behaviour of the polymer is similar for low 
e,/ea ratios only. For higher ratios the size of a chain 
increases and then sharply decreases. The fraction of t rans  

states increases sharply in semiflexible chains for all e~/ea 
ratios. At the ® temperature, where repulsive interactions 
are balanced with attractions, the polymer coil scales as 
the random flight model. The location of the O 
temperature (1.88) is different from that of linear chains 
on the same lattice (2.12) 16'17. The expansion factor of a 
star polymer changes very smoothly with temperature. 
Its courses on the plot are almost identical to those of 
linear chains for all chain lengths under consideration. 
In the case of semiflexible chains, the ® temperature 
becomes lower with increasing eg/e~ ratio in a similar 
region as for linear polymers t6'17. Generally ®br < ®~ for 
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